Während der letzten drei Winter mussten im Vergleich zu früheren Jahren vermehrt Käse mit Buttersäreugärung festgestellt werden. Im Unterschied zu früheren Beobachtungen trat dabei oftmals eine eher schwache Art der Buttersäreugärung auf: entweder blähten die Käse nur sporadisch oder die Buttersäreugärung war degustativ nur schwach erkennbar. Von der Zunahme der Fälle von Buttersäreugärung sind Käsereien in der ganzen Schweiz, auch gut fabrizierende Betriebe, betroffen.

Buttersäreugärung führt zu Spätblähung der Käse

Verantwortliche Keime

Gute Melkhynie ist entscheidend

Gehalt ist abhängig vom eingesetzten Futter

Nachweis einer Buttersäuregärung

Für den Nachweis einer Buttersäuregärung stehen verschiedene Möglichkeiten zur Verfügung (Stadhouder und Bergsma 1990):

- mikrobiologischer oder immunologischer Nachweis der Sporen beziehungsweise vegetativer Zellen (Bergsma und Sivel 1990; Höfler 1987)
- Messung des Redoxpotentials im Käse, E < 250 mV ist ein guter Indikator, ob Buttersäuregärung eingesetzt hat (Kleter et al. 1984), bzw. für die Bildung von H₂ (Langeveld und Galesluit 1971).
- chemischer oder enzymatischer Nachweis der Stoffwechselprodukte: dabei ist zu beachten, dass Buttersäure auch bei Fertigpulance und Eiswasserzubereitungen entstehen kann (Mayeze 1983)
- organoleptischer Nachweis
- Abflößen, Rösten, Schnittbildern.

Unterschiede zwischen Haltungssystemen

Weitere Kontaminations-quellen beachten

Als weitere mögliche Infektionsquellen werden genannt (Amrein und Häni 1995; Rentsch und Winkler 1995):

- schlechte Hygiene (Silage-ähnliche Züchtung);
- sporenhaltiges Wasser, verschmutzte Brunnenröhre;
- schmutzige, schleimige Tränkebecken oder Futterkübel;
- Zukauf von Kühen, die mit Sporen gereiferten,;
- Kreuzkontaminationen;
- morastige Bauflächen;
- unsaubare Futtermischwagen.

In einem aktuellen Fall wird eine unerwartete Gleichungsdichtung einer Milchpumpe als mögliche Ursache vermutet (Amrein und Häni 1995).

Käsefabrikation beeinflusst Sporenentwicklung

Nach Grubhofer (1992) ist die Entwicklung der Clostridien von verschiedenen Faktoren abhängig:

- Zahl der Clostridien in der Käsereimilch;
- pH-Wert des Käses;
- Reifungsfaktoren (Zeit, Temperatur usw.);
- Salzgehalt;
- Stückgrösse;
- in geringem Maße auch von der Keimflora in der Milch und im Käse.

Je höher der pH-Wert, je niedriger der Salzgehalt, je höher die Reifungstemperatur und je länger die Reifungszeit, desto grösser ist die Gefahr der Auskeimung und Ausbildung einer Blasenbildung. Kleter et al. (1982; 1984) konnten zeigen, dass im Käse nicht nur der pH-Wert eine entscheidende Größe ist, sondern auch die Milchsauregehalt. Es gelang ihnen, in Gouda-Käse aus mit Sporen kontaminierten Milch (10 Sporen / ml) alleine über den Milchsauregehalt (4,5 % in wäßriger Phase) und die Salzkonzentration (4,5 % in wässriger Phase) eine Buttersäuregärung zu unterdrücken, wenn auch die Käse qualitative Anforderungen nicht zu genügen vermochten.

Von Bedeutung ist auch die Grösse der Käselaibe: In verhältnismässig kleinen Einheiten sind die erforderlichen streng anaeroben Bedingungen nicht gegeben und die Salzdifussion ist rascher abgeschlossen, weshalb die Gefahr einer Buttersüßgärung kleiner ist (Stadhouders 1990a).

Zusatzstoffe hemmen Auskeimen der Sporen

Lysozym: Lysozym ist eine Enzymstoffe, der in vielen Organen und Körperflüssigkeiten von Menschen, Tieren oder Bakterien vorkommt (Teuber 1980). Es zählt auch zum natürlichen Abwehrsystem des Menschen gegen Bakterien. In der Milch-

Nisin oder nisinbildende Kulturen: Die Hemmung der Clostridienauskeimung durch Nisin beziehungsweise nisinbildende Kulturen wird in einzelnen Veröffentlichungen erwähnt, bisher sind aber keine zufriedenstellenden Ergebnisse bekannt (Grubhofer 1992). Nisinbildende Kulturen haben sich in der Praxis nicht durchsetzen können, da sie gegenüber Bakteriophagen sehr anfällig sind (Guericke 1993) und weil auch kubativ heterfermentative Milchsäurebakterien gehemmt werden und somit bei den betreffenden Käsesorten keine Lochbildung mehr erreicht werden kann (Lodi 1990).

Formaldehyd: Zur Unterdrückung der Spätausbruch wird beim Granu-Käse oftmals zusammen mit Lysozym auch Formaldehyd eingesetzt (Bottazzi et al. 1992).

Antagonistische Kulturen haben Zukunft

Folgerungen

Aufgrund des Literaturstudiums ergaben sich kurz- und mittelfristig folgende Ansatzzpunkte für das Projekt «Buttersäuregärung Rohmilchkleie» des Arbeitsprogramms 1996 bis 1999 der FAM:
- Salzdiffusion;
- Acetatgehalt;
- antagonistische Kulturen.

Die technische Entwicklung, wie zum Beispiel mechanische Verfahren zur Keimeinigung, wird im Rahmen des Projektes «Grundlagen der Käsentechnologie» verfolgt und gegebenenfalls in Versuche integriert.

LITERATUR

Das ausführliche Literaturverzeichnis ist beim Autor erhältlich.

RÉSUMÉ

Beratung futyrique dans le fromage: synthèse bibliographique

Défaut pourtant mener à une totale dé-valorisation du fromage, la fermentation futyrique connue en Suisse une recrudescence. Une liste d’ouvrages spécialisés a été dressée en préambule aux essais visant à établir des connaissances sûres au sujet des facteurs de germination et de croissance des bacilles butyriques les plus importants. Sur la base de cette liste, nous avons déterminé les points de départ suivants: diffusion du sel, teneur en acétate et cultures antagonistes. L’évolution technique, tel- le par exemple, les procédés mécaniques de réduction des germes, se poursuit et, le cas échéant, est intégrés dans les essais.

SUMMARY

Late blowing in cheese: an review

Butyric acid fermentation, which can lead to total spoilage of cheese, is on the increase in Switzerland. A survey of the literature was carried out before studying the factors which could influence the germination and growth of butyric acid producing spores in cheese. The following elements were chosen as starting points: salt diffusion, acetate content, and antagonistic cultures. Technical developments such as procedures for reducing the number of germs will be followed and if necessary integrated in the trials.

KEY WORDS: cheese, late blowing, spores clotted tyrobutyricum.